
A GLOBAL CONVOLUTION DIAGRAM FOR R

GUS LONERGAN

Abstract. The aim of this appendix is to give another proof of the commuta-
tivity of the Coulomb branch by constructing a global convolution diagram for

R. This is a direct generalization of the traditional proof of the case N = 0,

which uses the Beilinson-Drinfeld global convolution diagram for Gr.

1. Preliminaries on arc-spaces and loop-spaces

1.1. In this section, we recall certain standard constructions and facts of [3], Chap-
ters 4-5.

1.2. Let X be a smooth complex curve and let S be a finite set. Given a com-
mutative ring R and an R-point x of XS , we denote the coordinates of x by xs
(s ∈ S), and write ∆S(x) for the formal neighborhood of the union of the graphs
of xs (s ∈ S). For notational simplicity, we frequently remove commas and braces
from S, and also drop the part (x), when it is clear which point we refer to. So for
example the expression:

∆{1,2}(x)

becomes:
∆12.

1.3. Now fix an affine algebraic group A over C. Consider the following functor
from commutative rings to groups over XS :

AS(R) := {(x, f)|x ∈ XS(R), f : ∆S → A}.
Then AS is represented by the limit of a projective system of smooth affine group
schemes over XS :

AS = lim←−(. . .→ (AS)2 → (AS)1)

such that each transition morphism is a smooth homomorphism. In particular, AS
is a formally smooth affine group scheme (of countably infinite type) over XS , but
this is not so important for us. Recall that in the definition of the Coulomb branch
as a convolution algebra formal homological shifts such as

[2 dimA(O)]

appear (for A = G,N). Similarly, in the global situation formal homological shifts
such as

[2 dimAS ]

will appear1. For example, in the case where the underlying space is AS , for each
d we have ω(AS)d

∼= C(AS)d [2 dim(AS)d]. These complexes are compatible in the

1Only for S of cardinality 1 or 2; but it clarifies the picture and simplifies the exposition to
work more generally at this point.
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natural way under !-pullbacks along the transition morphisms. We thus consider
ωAS

as the formal homological shift

ωAS
∼= CAS

[2 dimAS ],

where both sides are to be understood by evaluating on smooth quotients of AS
and ‘piecing together’ using !-pullbacks. Likewise we have a formal expression

ωAS
[−2 dimAS ] ∼= CAS

where both sides are to be understood by evaluating on the smooth quotients (AS)d
of AS and ‘piecing together’ using ∗-pullbacks.

1.4. Let θ : S′ → S be a morphism of finite sets. It induces a map XS → XS′ .
Given an R-point x of XS , this map determines an R-point x′ of XS′ , and an
embedding ∆S′(x

′)→ ∆S(x). Hence by restriction along this embedding we obtain
a map

pθ : AS → AS′ .

This induces a homomorphism

qθ : AS → AS′ ×XS′ XS

over the base XS . If θ is surjective, then qθ is an isomorphism. If θ is injective,
then qθ seems strange at first sight. For instance if θ′ is a section of θ then qθ is an
isomorphism over the resulting copy of XS′ ⊂ XS , whereas over a typical point of
XS , qθ takes the form of a projection map

A(O)S → A(O)S
′
.

However, this is misleading: qθ is pro-smooth when θ is injective. What we mean
by this is that the projective systems of smooth affine group schemes over XS with
smooth transition morphisms

((AS)d)d∈N

underlying AS may be taken, simultaneously for all S, to be compatible with all
qθ, i.e. so that qθ is the limit of a morphism

(qθd : (AS)d → (AS′)d ×XS′ XS)d∈N

of projective systems, where each map qθd is a smooth homomorphism over XS .
Thus, it makes sense to write (and is true that):

(pθ)∗ωAS′×XS′ (X
S)[−2 dimAS′ − 2(|S| − |S′|)] = ωAS

[−2 dimAS ],

et cetera, where the formula should be understood as a statement about complexes
on smooth quotients over XS , compatible under ∗-pullbacks.

Example 1.1. Consider the case S = {1}. Then A1 is a Zariski-locally trivial
A(O)-bundle over X. Then, the formal homological shift [2 dimA(O)] also makes
sense in this context, and we have [2 dimA(O)] = [2 dimA1 − 2].

Example 1.2. Consider for instance the case A = C and S = {1, 2}. Then A12

should be thought of as a deformation of the first following projective system into
the second:

(C[[t]]/t2d)d  (C[[t]]/td × C[[t]]/td)d

while A1 should be thought of as a trivial deformation:

(C[[t]]/td)d  (C[[t]]/td)d
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and we have the morphism of deformations of projective systems:

(C[[t]]/t2d)d  (C[[t]]/td × C[[t]]/td)d
↓ ↓

(C[[t]]/td)d  (C[[t]]/td)d

where the first downward arrow is the quotient map, and the second downward
arrow is the projection map (to the first factor), both of which halve dimension in
the dth approximation. It just happens that the limit of the first downward arrow
is an isomorphism, while the limit of the second downward arrow is a non-trivial
projection.

1.5. From now on, we assume θ is an injection, and identify S′ with its image under
θ. Now, in addition to the formal neighborhood ∆S we have the punctured formal
neighborhood

∆S′

S (x) := ∆S(x)− ∪s∈S′xs

where in this formula we conflate the point xs with its graph. The general nota-
tional paradigm2 here is that subscripts determine discs and superscripts determine
punctures. Consider the functor

AS
′

S (R) := {(x, f)|x ∈ XS(R), f : ∆S′

S (x)→ A}.

Then AS
′

S is represented by an ind-scheme, formally smooth over XS . It is a group
in ind-schemes (over XS), but not an inductive limit of groups. Nonetheless, it is
an ind-locally nice, reasonable ind-scheme in the sense of [2], meaning that it is a
direct limit of closed embeddings with finitely generated ideals:

(AS
′

S )1 → (AS
′

S )2 → . . .

of schemes over XS , each of which is locally nice, meaning that Zariski-locally3 it is
the product of a finite-type scheme with an affine space (of countable dimension).
We shall call such an ind-scheme reasonably nice. The subgroup AS may be taken as
the first subscheme (AS

′

S )1 in this inductive structure. The left- and right-regular
actions of the subgroup AS preserve the inductive structure, meaning that each
(AS

′

S )c has an action on both sides by AS over XS , even though it is not itself

a group. Moreover the quotient (AS
′

S )c/AS is of finite-type over XS , and flat,
although generally quite singular. The result is that the quotient

AS
′

S /AS

has the structure of ind-finite-type flat ind-scheme over XS .

Lemma 1.3. (1) AS
′

S /AS is ind-projective if and only if A is reductive.

(2) AS
′

S /AS is reduced if and only if A has non no-trivial characters.

Remark 1.4. ASS is the Beilinson-Drinfeld grassmannian (on |S| points).

2Warning: this doesn’t apply to X!
3In [2] this is relaxed to ‘Nisnevich-locally’.
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1.6. For any chain of inclusions S′′
θ′−→ S′

θ−→ S we have natural maps

pθ : AS
′′

S → AS
′′

S′ ,

qθ : AS
′′

S → AS
′′

S′ ×XS′ XS ,

defined as in subsection 1.4. Then qθ : AS
′′

S → AS
′′

S′ ×XS′ XS has as a subgroup
qθ : AS → AS′ ×XS′ XS , and the resulting map

AS
′′

S /AS → (AS
′′

S′ /AS′)×XS′ XS

is an isomorphism.

Warning 1.5. Observe thatAS
′′

S is an ind-AS-torsor over the ind-scheme (AS
′′

S′ /AS′)×XS′

XS , and the homomorphism qθ : AS
′′

S → AS
′′

S′ ×XS′ XS is surjective. It is tempting

therefore to try to view AS
′′

S as being in some sense a torsor over AS
′′

S′ ×XS′ XS for
some group ker qθ. However, the kernel of the projective system

((AS)d → (AS′)d ×XS′ XS)d∈N

of subsection 1.4 is not Mittag-Leffler. We are not sure how to overcome this issue,
so do not attempt to take this point of view.

2. Global convolution diagram for R

2.1. For a finite set S, we put

T S
′

S (R) = {(x, E , f, ṽ)}/ ∼

where x ∈ XS(R), E is a principal G-bundle on ∆S , f is a trivialization of E on

∆S′

S , and ṽ is an N-section of E , taken up to equivalence. This is the same as the
balanced product

T S
′

S = GS
′

S

×XS

GS
NS .

Thus, T S
′

S is represented by a reasonably nice ind-scheme with an ind-pro-smooth

map to the Beilinson-Drinfeld grassmannian GS
′

S /GS . In particular it is formally
smooth. Multiplication gives us a map

T S
′

S → NS′

S

and we define RS
′

S to be the fiber product

RS
′

S := T S
′

S ×NS′
S
NS .

Over any closed XS-subscheme of GS
′

S /GS , the embedding RS
′

S → T
S′

S has finite

codimension. Therefore RS
′

S is also a reasonably nice ind-scheme, mapping to

GS
′

S /GS , and of ind-finite codimension in T S
′

S . Note that RS
′

S is not formally

smooth, and in particular the map RS
′

S → GS
′

S /GS is no longer ind-pro-smooth.
As a functor we have

RS
′

S (R) = {(x, E , f, v)}/ ∼
where x, E , f are as in T S

′

S , and v is an N-section of E such that f(v) extends4 to

∆S . We define the shifted dualizing complex on T S
′

S , RS
′

S as for T , R. Namely:

4It is a priori defined only on ∆S′
S . The extension is necessarily unique.
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(1) On each closed subscheme (T S
′

S )c of (T S
′

S )c, pro-smooth over (GS
′

S /GS)c

we set

ω(T S′
S )c [−2 dimNS +2|S|]

to be the pullback of the dualizing complex of (GS
′

S /GS)c, i.e. the collection

of its pullbacks to each formally smooth quotient (T S
′

S )cd of (T S
′

S )cd smooth

over (GS
′

S /GS)c, compatible under ∗-pullback;

(2) Since T S
′

S is a reasonably nice ind-scheme, we can apply the !-pullback to

such a collection of complexes on (T S
′

S )c, and obtain one on (T S
′

S )c−1. In
this way, the collections ω(T S′

S )c [−2 dimNS +2|S|] are compatible under !-

pullbacks. The resulting compatible collection is called ωT S′
S

[−2 dimNS +2|S|].
(3) Using the ind-finite codimensionality of the embedding i : RS

′

S → T
S′

S , we
form a !-compatible collection of ∗-compatible collections of complexes

ωRS′
S

[−2 dimNS +2|S|] := i!ωT S′
S

[−2 dimNS +2|S|].

2.2. We will apply the abbreviations of subsection 1.2 to our spaces R, T etc. so
that for instance

R{2}{1,2}
becomes

R2
12 .

We will also write XS as Πs∈SXs, e.g. X{1,2} = X1 × X2. The obvious starting
point for the global convolution diagram is R1

1×R
2
2, a Zariski-locally trivial R-

bundle over X1 ×X2. Consider the following space:

R1+2(R) = {((x1, x2), E1, E2, f1, f2, v1, v2)}/ ∼

where x1, x2 are R-points of X, each E i a principal G-bundle on ∆12, fi is a
trivialization of E i on ∆i

12, and vi is an N -section of E i such that fi(vi) extends to
∆12. It is constructed as

R1+2 = R1
12×X1×X2

R2
12,

a reasonably nice ind-scheme over X1 ×X2. It is of ind-finite codimension in the
formally smooth reasonably nice ind-scheme

T 1+2 = T 1
12×X1×X2

T 2
12 = {((x1, x2), E1, E2, f1, f2, ṽ1, ṽ2)}/ ∼ .

There is a map

α : R1+2 → R1
1×R

2
2

given by restricting E i, fi, vi to ∆i ⊂ ∆12. Over the diagonal X ⊂ X1 × X2, this
map α is an isomorphism. But on the complement U of the diagonal, we have a
canonical isomorphism

R1+2 |U = (R1
1×R

2
2)|U ×U (N1×N2)|U

and α is just the projection. Nonetheless, α is ind-pro-smooth. Indeed, it is the
product over X1 ×X2 of maps

R1
12 → R

1
1×X2,

R2
12 → R

2
2×X1;
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so it suffices to see that the former is ind-pro-smooth. But note that we can write

T 1
1×X2 = G1

1

×X1

G1
N1×X2 = G1

12

×X1×X2

G12
N1

where G12 acts on N1 via the homomorphism G12 → G1. Then, the natural map

T 1
12 → T

1
1×X2

is that associated to the pro-smooth map N12 → N1, so is ind-pro-smooth. The
fact that the diagram

R1
12 → R1

1×X2

↓ ↓
T 1

12 → T 1
1×X2

is Cartesian gives the result. We have:

α∗ωR1
1×R2

2
[−2 dimN1×N2] ∼= ωR1+2 [−2 dimN12×X1×X2 N12].(2.1)

Note that R1
1×R

2
2, T 1

1×T
2
2 are acted on factor-wise by G1×G2, which receives the

factor-wise map from G12 ×X1×X2
G12. This latter group also acts in the natural

way on R1+2, T 1+2, and the diagram

R1+2 → R1
1×R

2
2

↓ ↓
T 1+2 → T 1

1×T
2
2

is G12×X1×X2
G12-equivariant. This action preserves the inductive structure of the

diagram, and also the locally nice structure of each closed piece, which allows us to
view the appropriately shifted dualizing complex on each space as G12×X1×X2G12-
equivariant. We may thus define the shifted equivariant Borel-Moore homologies:

HBM,G1×G2

∗−2 dimN1×N2
(R1

1×R
2
2),

H
BM,G12×X1×X2

G12

∗−2 dimN1×N2
(R1

1×R
2
2),

H
BM,G12×X1×X2

G12

∗−2 dimN12×X1×X2
N12

(R1+2),

as the colimits of the equivariant cohomologies of the appropriately shifted dualizing
complexes on the various finite-dimensional approximations. We have maps

HBM,G1×G2

∗−2 dimN1×N2
(R1

1×R
2
2)→ H

BM,G12×X1×X2
G12

∗−2 dimN1×N2
(R1

1×R
2
2)→ H

BM,G12×X1×X2
G12

∗−2 dimN12×X1×X2
N12

(R1+2).

The first map is the restriction of the equivariant structure, while the second is
induced by α∗, using equation 2.1. This is the first step of our global convolution
story.

2.3. Let’s define the remaining parts of the global convolution diagram. We set

R̃1+2 = {((x1, x2), E1, E2, f1, f2, v1, v2, g1)}/ ∼

where x1, x2, E1, E2, f1, f2, v1, v2 are as in R1+2, and g1 is a trivialization of E1 (on
∆12) required to satisfy:

g1v1 = f2v2.

Note that v1 is determined by the rest of the data as v1 = g−11 f2v2. That is, R̃1+2

is related to

T̃ 1+2 := {((x1, x2), E1, E2, f1, f2, v2, g1)}/ ∼= G1
12 ×X1×X2

R2
12



A GLOBAL CONVOLUTION DIAGRAM FOR R 7

by the Cartesian square

R̃1+2 → T̃ 1+2

↓ ↓
R1

12 → T 1
12

where the rightmost downward arrow is the composition

T̃ 1+2 = G1
12 ×X1×X2

R2
12 −→ G1

12 ×X1×X2
N12 → G1

12

×X1×X2

G12
N12 = T 1

12 .

We have factor-wise actions of G12 ×X1×X2
G12 on R̃1+2, T̃ 1+2, such that the

Cartesian diagram

R̃1+2
β−→ R1+2

↓ ↓
T̃ 1+2

b−→ T 1
12×X1×X2

R2
12

(2.2)

is equivariant. In terms of points, the left-hand G12 acts by changing the trivializa-
tion f1, while the right-hand factor acts by changing simultaneously the trivializa-
tions g1, f2; β is the map which simply forgets g1. The right-hand G12 acts freely,
and the quotient space is

R1+2 = {((x1, x2), E1, E2, f1, g−11 f2, v1, v2)}/ ∼

where x1, x2, E1, E2, f1, v1 are as in R1+2, while g−11 f2 is an isomorphism from E2
to E1 over ∆2

12, and v2 is an N -section of E2 such that g−11 f2v2 extends to ∆12 and
is equal to v1 there (again v1 is determined by the rest of the data). We write

γ : R̃1+2 → R1+2

for the projection. It is ind-pro-smooth. Finally, we have a natural map

δ : R1+2 → R12
12 = {((x1, x2), E , f, v)}/ ∼

((x1, x2), E1, E2, f1, g−11 f2, v1, v2) 7→ ((x1, x2), E2, f1g−11 f2, v2).

Note that δ factors as δ = δ′δ′′ where δ′′ : R1+2 → • is an ind-closed embedding of
finite codimension and δ′ : • → R12

12 is defined by the Cartesian square

• δ′−→ R12
12

↓ ↓
G1

12
×X1×X2

G12
G2

12/G12
d−→ G12

12/G12

where the bottom row is simply the top row for N = 0, and the vertical maps forget
v1, v2, v. It is well-known that d is ind-projective; this fact shows up already in [4]
and essentially follows from Lemma 1.3. It follows that δ is also ind-projective,
meaning that in each piece of the inductive structure, δ is Zariski-locally of the
form

Y × A f×id−−−→ Z × A
for f : Y → Z a projective map between schemes of finite type, and A some affine
space of countable dimension. In fact, δ is an isomorphism over U , while over the
diagonal its fibers are products of closed subvarieties of affine Grassmannians. Fur-
thermore, δ is G12-equivariant.
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2.4. The global convolution diagram is

R1
1×R

2
2

α←− R1+2
β←− R̃1+2

γ−→ R1+2
δ−→ R12

12 .

As we have explained, α, β are G12×X1×X2
G12-equivariant, γ is the quotient map

by the free action of the right-hand G12, and δ is equivariant for the remaining copy
of G12. We have already explained how α defines a map

α∗ : HBM,G1×G2

∗−2 dimN1×N2
(R1

1×R
2
2)→ H

BM,G12×X1×X2
G12

∗−2 dimN12×X1×X2
N12

(R1+2).

Everything else works out essentially as in [1], as we now indicate. First, recall the
G12 ×X1×X2 G12-equivariant Cartesian diagram 2.2:

R̃1+2
β−→ R1+2

↓ ↓
T̃ 1+2

b−→ T 1
12×X1×X2 R

2
12

and recall that T̃ 1+2 is nothing other than G1
12 ×X1×X2

R2
12. Thus we may write

b = pr1b×X1×X2
pr2b

pr1b = ψφ
pr2b = pr2

where we have factored pr1b as

G1
12 ×X1×X2

R2
12

φ−→ G1
12 ×X1×X2

N12
ψ−→ T 1

12 .

It follows that

b∗ωT 1
12×X1×X2

R2
12

[−2 dimN12×X1×X2
N12] ∼= ωT̃ 1+2

[−2 dimN12×X1×X2
G12]

and hence by base change we have have a map

β∗ωR1+2
[−2 dimN12×X1×X2

N12]→ ωR̃1+2
[−2 dimN12×X1×X2

G12].(2.3)

This map is equivariant, and it therefore determines a ‘pullback with support’ map:

β∗ : H
BM,G12×X1×X2

G12

∗−2 dimN12×X1×X2
N12

(R1+2)→ H
BM,G12×X1×X2

G12

∗−2 dimN12×X1×X2
G12

(R̃1+2).

Since it is a G12-torsor, γ induces an isomorphism

γ∗ : HBM,G12

∗−2 dimN12
(R1+2)

∼−→ H
BM,G12×X1×X2

G12

∗−2 dimN12×X1×X2
G12

(R̃1+2).

Finally since it is ind-proper and equivariant, δ induces a map

δ∗ : HBM,G12

∗−2 dimN12
(R1+2)→ HBM,G12

∗−2 dimN12
(R12

12).

2.5. Recall that (dual) specialization maps commute with pullbacks along smooth
maps and pushforwards along proper maps, and are compatible with equivariance
with respect to smooth group schemes. Therefore, since every space in sight is a
reasonably nice ind-scheme and the groups GS are pro-smooth over XS , we have
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(dual) specialization maps to the diagonal X0 ⊂ X1 ×X2:

s1 : HBM,G1×G2

∗−2 dimN1×N2
(R1

1×R
2
2) → H

BM,G0×X0
G0

∗−2 dimN0×X0
N0

(R0
0×X0 R

0
0)

s2 : H
BM,G12×X1×X2

G12

∗−2 dimN1×N2
(R1

1×R
2
2) → H

BM,G0×X0
G0

∗−2 dimN0×X0
N0

(R0
0×X R

0
0)

s3 : H
BM,G12×X1×X2

G12

∗−2 dimN12×X1×X2
N12

(R1+2) → H
BM,G0×X0

G0

∗−2 dimN0×X0
N0

(R0
0×X0 R

0
0)

s4 : H
BM,G12×X1×X2

G12

∗−2 dimN12×X1×X2
G12

(R̃1+2) → H
BM,G0×X0

G0

∗−2 dimN0×X0
G0

(R̃0)

s5 : HBM,G12

∗−2 dimN12
(R1+2) → HBM,G0

∗−2 dimN0
(R0)

s6 : HBM,G12

∗−2 dimN12
(R12

12) → HBM,G0

∗−2 dimN0
(R0

0).

Here R̃0, R0 are respectively locally trivial p−1(R×R), q(p−1(R×R))-bundles
over X0 in the notations of diagram (3.2) in the main paper. In fact, the restriction
of the convolution diagram to X0 induces the following maps between the targets
of the specialization maps:

H
BM,G0×X0

G0

∗−2 dimN0×X0
N0

(R0
0×X0

R0
0)

id−→ H
BM,G0×X0

G0

∗−2 dimN0×X0
N0

(R0
0×X0

R0
0)

id−→ H
BM,G0×X0

G0

∗−2 dimN0×X0
N0

(R0
0×X0 R

0
0)

β∗0−→ H
BM,G0×X0

G0

∗−2 dimN0×X0
G0

(R̃0)

(γ∗0 )
−1

−−−−→ H
BM,G0×X0

G0

∗−2 dimN0×X0
G0

(R̃0)
(δ0)∗−−−→ HBM,G0

∗−2 dimN0
(R0

0)

I claim that the maps α∗, β∗, (γ∗)−1, δ∗ are intertwined with id, β∗0 , (γ
∗
0)−1, (δ0)∗

by the (dual) specialization maps. For α∗, (γ∗)−1 it is a consequence of ind-pro-
smoothness of α, γ (and also pro-smoothness of G12). For δ∗ it is a consequence of
ind-properness. For β∗, it is because the map

(β0)∗ωR0
0×X0

R0
0
[−2 dimN0×X0 N0]→ ωR̃0

[−2 dimN0×X0G0]

defined using the Cartesian square:

R̃0
β0−→ R0

0

↓ ↓
T̃

0

0
b0−→ T 0

0×X0 R
0
0

obtained by restricting diagram 2.2 to X0, factors as:

(β0)∗ωR0
0×X0

R0
0
[−2 dimN0×X0 N0] ∼= (β0)∗i!1ωR1+2 [−2 dimN12×X1×X2 N12 +2]

can−−→ i!2β
∗ωR1+2

[−2 dimN12×X1×X2
N12 +2]

i!2[2](2.3)−−−−−−→ i!ωR̃1+2
[−2 dimN12×X1×X2

G12 + 2]
∼= ωR̃0

[−2 dimN0×X0
G0].

Here can is the canonical map arising from the base change isomorphism, (2.3)
denotes the map of equation 2.3, and i1, i2 denote the appropriate inclusions of the
diagonal subspaces. The consequence is the following formula:

s6δ∗(γ
∗)−1β∗α∗ = (δ0)∗(γ

∗
0 )−1β∗0s1 : HBM,G1×G2

∗−2 dimN1×N2
(R1

1×R
2
2)→ HBM,G0

∗−2 dimN0
(R0

0).
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2.6. Now each (dual) specialization map sn factors as s′nj
∗
n where j∗n is the restric-

tion map to the equivariant Borel-Moore homology of the part lying over U , and
s′n is some other map. Furthermore, the restriction of the convolution diagram to
U induces the following maps between the targets of the restriction maps:

H
BM,(G1×G2)|U
∗−2 dim(N1×N2)|U ((R1

1×R
2
2)|U )

−→ H
BM,(G1×G2)|U×U (G1×G2)|U
∗−2 dim(N1×N2)|U ((R1

1×R
2
2)|U )

−→ H
BM,(G1×G2)|U×U (G1×G2)|U
∗−2 dim(N1×N2)|U×U (N1×N2)|U ((R1

1×N2)|U ×U (N1×R2
2)|U )

−→ H
BM,((G1×X1

G1)×(G2×X2
G2))|U

∗−2 dim((N1×X1
G1)×(G2×X2

N2))|U ((R̃1 × (G2 ×X2
R2

2))|U )

−→ H
BM,(G1×G2)|U
∗−2 dim(N1×N2)|U ((R1

1×R
2
2)|U )

−→ H
BM,(G1×G2)|U
∗−2 dim(N1×N2)|U ((R1

1×R
2
2)|U )

Let us explain what each map does:

(1) The first map views any (G1 ×G2)|U -equivariant class as also equivariant
for the trivial actions of the left-hand copy of G2, and the right-hand copy
of G1, in (G1 ×G2)|U ×U (G1 ×G2)|U .

(2) The second map pulls this back along the (N2×N1)|U -bundle map (i.e.
multiplies fiberwise by the equivariant fundamental class of N(O)×N(O)).

(3) The third map starts by rewriting (R1
1×N2)|U×U (N1×R2

2)|U as ((R1
1×X1

N1)×
(N2×X2

R2
2))|U , and rewriting the action of (G1 ×G2)|U ×U (G1 ×G2)|U

as one of ((G1 ×X1 G1)× (G2 ×X2 G2))|U . By definition, R̃1 is the locally
trivial p−1(R×R)-bundle on X1 given as

R̃1 = N1×N1
1
(G1

1 ×X1
N1).

The G1 ×X1 G1-equivariant map from here to R1
1×X1 N1 is given as the

product (over X1) of the quotient by the right-hand copy of G1 with the
projection to the right-hand copy of N1. The ‘pullback with support’ map

H
BM,G1×X1

G1

∗−2 dimN1×X1
N1

(R1
1×X1 N1)→ H

BM,G1×X1
G1

∗−2 dimN1×X1
G1

(R̃1)

corresponds to the composition of usual ‘pullback with support’ (spread
out over X1) with multiplication by H∗G1

(X1) under the identification

H
BM,G1×X1

G1

∗−2 dimN1×X1
N1

(R1
1×X1

N1) = HBM,G1

∗−2 dimN1
(R1

1)⊗H∗(X1) H
∗
G1

(X1).

Meanwhile, the ‘pullback with support’ (actually, here no support is re-
quired) map

H
BM,G2×X2

G2

∗−2 dimN2×X2
N2

(N2×X2 R
2
2)→ H

BM,G2×X2
G2

∗−2 dimG2×X2
N2

(G2 ×X2 R
2
2)

is isomorphic simply to the multiplication map

H∗G2
(X2)⊗H∗(X2) H

BM,G2

∗−2 dimN2
(R2

2)→ HBM,G2

∗−2 dimN2
(R2

2).

(4) The fourth map is the isomorphism, and the fifth is the identity.

The result is that the composition of all these maps is the identity. On the other
hand, since the restriction maps j∗n intertwine these maps with the corresponding
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maps on the X1 ×X2 level, we have the following:

(δ0)∗(γ
∗
0 )−1β∗0s1 = s6δ∗(γ

∗)−1β∗α∗

= s′6j
∗
6δ∗(γ

∗)−1β∗α∗

= s′6j
∗
1 .

2.7. Finally, note that this last map s′6j
∗
1 is symmetric with respect to the auto-

morphism τ of HBM,G1×G2

∗−2 dimN1×N2
(R1

1×R
2
2) induced by the degree 2 automorphisms

of G1×G2, R1
1×R

2
2 which switch the factors (and also exchange 1 with 2). There-

fore, (δ0)∗(γ
∗
0 )−1β∗0s1 has the same property. But, taking X = C, we identify the

domain

HBM,G1×G2

∗−2 dimN1×N2
(R1

1×R
2
2) = H

BM,G(O)
∗−2 dimN(O)(R)⊗HBM,G(O)

∗−2 dimN(O)(R)

and the target

HBM,G0

∗−2 dimN0
(R0

0) = H
BM,G(O)
∗−2 dimN(O)(R).

The map (δ0)∗(γ
∗
0)−1β∗0s1 is the usual convolution (s1 is an isomorphism) while τ

is the standard twist. Therefore, the Coulomb branch is commutative as claimed.
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