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ABSTRACT. We use Steenrod’s construction to prove that the quantum Coulomb
branch is a Frobenius-constant quantization.
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1. OVERVIEW

This talk is essentially about ‘power operations’. In the first part I will introduce
some power operations in homological algebra and in quantization theory. In the
second part I will explain how these are related in the context of ‘quantum Coulomb
branch’ of Braverman-Finkelberg-Nakajima.

2. STEENROD’S CONSTRUCTION

Notation 2.1.
G - alg. gp./C
X -alg. var./C,GC X
p - odd prime
D¢ (X) - G-equivariant bounded constructible derived category of sheaves
of F,-modules on X"
3 - suspension functor
F,, - equivariant constant sheaf
w - equivariant dualizing complex
pp - subgroup of C* of order p
X? = Map(pp, X) OGP % pyp
AXp: Dg(X) — Dgr(XP) functor of pt* external tensor power
Biadjoint functors Res : Dgr iy, (XP) 2 Dgr(XP) : Ind
1
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Theorem-Definition 2.1 (Steenrod). There is a functor St : Dg(X) — Dgr iy, (XP)
satisfying Res o St =~ A XIp. In a diagram:

Dg(X) D (XP)
I 1 Res
Da(X) 25 Darp, (XP).

commutes.

Facts 2.2.
(1) St¥ = ¥rst.
(2) Given f,g : A — B in Dg(X), can find a morphism h : AKP — BBP in
Dgrywp(XP) st. St(f +g) — St(f) — St(g) equals composition

Ind(h)

AU(h) : St(A) adjunction In d(A.p) In d(B.p) adjunction St(B)

(3) St commutes with multiplication by Fp,.
() SiE,) = F,.
(5) St(w) =

(6)

St is monmdal.

Consequence 2.3.
(1) Identify G-equivariant F,-cohomology H¢(X) with Homp,, x)(Fp, X" Fp).
So St induces non-linear maps

St: HY(X) — HZ,, (XP).

Pull back along diagonal A:

A*oSt: HE(X) — HEY, (X) 25 (HE(X)@H ()™ = (HE(X)[a, k)"

Here we used: Hj; (x) = Fy[a, ], deg(a) = 1,deg(h) = 2. These are linear,
because A* commutes with Av and Av : HE(X) — HE,, (X) equals 0.
Thus have a map of graded vector spaces

St HE(X)Y — HE(X)[a, b
Here H} (X)W is the Frobenius twist of HY(X). It is the algebra obtained
from HE(X) by multiplying degrees by p and introducing signs:
2y = (1ydes(@) deg®)(5) (7)1,
Fact: St’ is a map of algebras. Coefficients of monomials 2™, ah™ are the

Steenrod operations, up to some correction factors.
(2) Equivariant Borel-Moore homology of X is defined as

HPBMS = Homp,(x)(Fp, 2"w)

and we have maps of sets
St HPMC(X) — HBM-G"xm (xP),

These are not linear, and unlike for cohomology there is no way in general
to get something linear out of them. But we will see later that we can do
something like that if X has a suitably symmetric multiplication.
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Fact 2.4. The graded vector space HZM%(X) is a module over H}(X), and in

particular over H/(x). The family of maps
. I7BM,G BM,G? % iy,
St: H, (X)— H,, MHe (XP)
is compatible with the multiplication by
St: HAL(X) — HE, ., (XP)

GPxpp
in the natural way.

Example 2.5. Take X = %, G = C*. We have H}, = F,[c] with deg(c) = 2. The
map of algebras
St Fo[e]V — Fyle, a,h]
factors through the inclusion of Fy[c, h] for degree reasons, and sends ¢ to ¢? —hP~c.
Identifying Fj,[c] with O(g,,) and taking Spec we get a G,,-equivariant map
ASp i g,, X G — gl

ASj is the Frobenius map, while AS; is the Artin-Schreier map. This observation
generalizes in the natural way to X = %, G =T complex torus.

3. FROBENIUS-CONSTANT QUANTIZATIONS

AS}, plays a central role in the following theory. Let A be a commutative Fp-
algebra.

Definition 3.1. (1) A quantization of A is a flat (i.e. torsion-free) associative
F,[h]-algebra Ap satisfying Ap/h = A.
(2) A Frobenius-constant quantization of A is a quantization Ay of A together
with a map of algebras

F;-L : A(l) — Z(An)

such that F, mod % is the Frobenius map. Here Z(Ap,) is the center of Ay,
The Frobenius twist A() has meaning if we are in an equivariant setting,
see example.

Example 3.2. Consider G,, = SpecF,[z,z7!]. Set A = O(T* G,,) = Fpz, 271, y].
Its canonical quantization is the Weyl algebra

Ap = Di(Gm) = FolhCw, 27, 0)/([0, 2] = h).

These are both G, x G,-equivariant (regular action and homotheties) with z in
bidegree (1,0) and y, ¢ in bidegree (—1,2). Note that 2P, 0P € Z(Ay). So we can
set

Fh : A(l) — Z(AFL)

Yi — or.

K3
Fy, is Gy, x Gyp-equivariant. Taking invariants for the regular action we get

Folzy] — TFplh, 0]
xy — xPoP.
It is an exercise to show that z"0" = Hﬁgol(xa —4h). Thus we have
p—1
2P = | [(xd —ih) = (w0)P — P~ 'zo.

=0
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Therefore if we identify F,[xy] with Fy[c] and Fy[z0d, ] with Fy[c, i] we recover
ASy. Likewise if we replace G, with the Fj-split Langlands dual torus 7'V to
complex torus 7.

4. END OF FIRST PART - TIME FOR A BREAK

5. COULOMB BRANCH

5.1. Gr, T, R.

G - complex reductive algebraic group
T - maximal torus of G

N - G-module of dimension d < o
K =C((t), O =CI[t]].

For simplicity assume that p is large. We consider three ‘reasonable’ ind-schemes
of interest.

(1)

The affine Grassmannian Gr is an ind-projective ind-scheme whose C-
points are G(K)/G(O). Informally,

Gr = G(K)/G(0).

Its G(O)-orbits are parameterized by dominant cocharacters A of T. Cor-
responding orbit closures, Gr*, exhaust Gr. Gr parameterizes pairs

(€, /)

of a principal G-bundle £ on the formal disc A and a trivialization f of £
on punctured formal disc A°; up to isomorphism.
N(0O) is a G(O)-module, and we consider the associated N(O)-bundle

X
G(0O)
It is an infinite-dimensional vector bundle over Gr. Its ind-scheme structure
is given by pieces T> = T |grr. We write Tf; for finite-dimensional quotient
bundle 7> /t*. T*. The rank of this bundle is dimg,»(772) = nd. Moduli:
T parameterizes triples up to isomorphism

(€, fv)

where &£, f are as in Gr and v is an N-section of £.

We have T — N(K) by multiplication. R is defined to be the preimage of
N(O). It is a closed sub-ind-scheme of T, given by pieces R* = R lgm ©
T?. The fibers over Gr are vector subspaces of N(O) of finite codimension.
Each R contains the bundle t". 7> for some n >> 0, and we will consider
the fiberwise quotient Ry = R* /t*. T>. (Draw the picture). The possible
n go to o0 as A — o0. R parameterizes triples up to isomorpihsm

(€, f,v)
as in 7 with the additional condition that f(v) extends over A.

T = G(K) N(0).

Each of Gr, T, R and approximations Gr?, Tf‘l, R;\L have natural actions of G(O)x
C*. In the moduli interpretation, G(O) acts simply by changing the trivialization
f, while C* acts by automorphisms of A. 2.(E, f,v) = (24 &, 24 f, 20).

Example 5.1. G =C* N = C_,, r > 0. Then on C-points we identify:

(1)

Gr=17
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(2) T=7ZxC_.[[t]]
(3) R = Zeo x C_,[[{] U {1} x t" C_.[[t]] U {2} x 2" C_,[[{]] v ...

5.2. Borel-Moore homology. Fix A\, n such that Rﬁ exists. Let G be one of the
groups G(0),G(O) x C*. Since R, — R, is an N-bundle, the pullback induces
isomorphisms

HIMO(RY) = HELO (R ).
Therefore the shifted Borel-Moore homology

BM.,G A BM,G A
H.00 (Rn) = Hi—z dimg, A (T) (R")

is independent of n. We can therefore formally drop the ‘n’ and write it as

BM.,G A
i—2dim, x (T*)(R )-

We can then take a colimit as A — o (pushing forward along closed embeddings)
to obtain the formally shifted Borel-Moore homology:

BM.,G
H,~ dimg, (T) (R).

Definition 5.2. (1) The Coulomb branch is the graded H(*)-module

BM,G(O
A=HIHD) (R).

*—2dimg,

(2) The quantum Coulomb branch is the graded H}, . (*)-module

_ 7yBM,G(O)xC*
Ap=H,~, dimg,(T) (R).

Ap is a flat graded deformation of A over Fy[h] = Hy (*).

Fact 5.3. (1) A, Ay are evenly graded.
(2) A, Aj have algebra structures via ‘convolution’.
(3) A is commutative, and Ay, is its quantization. If T have time at the end I
will explain how this works.

Remark 5.4. We can replace G(O)-equivariance by G-equivariance in definition of
A, Aj. But to define the convolution we need to use G(O)-equivariance.

Example 5.5. (1) G =C* N = 0. Then Ay, is the Weyl algebra F,[h](z*, 0)/([0, 2] =
h). Equivariant BM homology of point n € Z is identified with F,[h, 20].z™.
(2) G=C* N=C_,, r>0. Then Ay is the subalgebra of the Weyl algebra
with basis
r 2r
et H(m*(? —ih)x, ﬂ(ma —ih)a?, ...
i=1 i=1
over F[h, 20].

5.3. Frobenius-constancy.

Main Theorem 5.1. Ay is a Frobenius-constant quantization.
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I will construct the map Fj, : A — Aj,. There is an ind-scheme R(p) over G,
parameterizing:
(z,&, f,v): = €C
£ a principal G-bundle over A -1,
[ atrivialization of & over A?_, /~.
v an N-section of £ such that f(v) extends over A, -1,

Here by definition:
e 7:G, — G, is the map x — xP.
o A1, is the formal neighborhood in G, of #~'z. In a formula,
Ay1, = Spec(lim C[A/(t7 — 2)").

n

o A°

9 _1, is the punctured formal neighborhood,

A%, = Spec((im C[t] /(7 — 2)")[(#* — 2)1]).

There is a global version of G(O) acting on R(y), but for simplicity we just
consider the actions of G by

g.(x, &, f,v) = (z,E,g0 f,v).
and of C* by
z.(x, &, f,v) = (2P, 24 &, 2o f, 240).

Also Ry is embedded in 7 (,), defined the same way as R(,) but without the

condition on v.
Ry < Tw)

The version of R with N = 0 is called Gr,. T(p) is an infinite-dimensional

vector bundle over Gr(;), with a fiberwise shift map (¥ — x). We may define

BM,G
H* 2d1mcr( ) T®) (R(p))

for G = G or G x C*, as in the case of R.

Away from 0: fibers of R,y < T ;) are identified with R” < 7. The action of
G is identified with the dlagonal actlon C* does not act, but u, = C* does act an
its action is identified with the cyclic action. Therefore we have:

BM,GxC* o \ _ rBM,Gxpyp P
H* 2d1mGro (T(p))( ()) H*+2—2dimGVrP(Tp)(R )

So by using Steenrod’s construction we can define a non-linear graded map

(1) BMG X fhp P BM ,G X pp D BM,GxC¥*
A g * 2dimg,» (TP) (R) * 2dimg,p ( TP)(R) H* 2— 2d1mGr° (T(p))( (p) )

We will compose this with the restriction

BM,GxC* 0 BM,GXpu °
H,75” 2dimg .o (T(p))( (p)) — H, 75" 2d11$1GTo (T<p))(R( ))'

Since G x pp acts trivially on the base G, we are able to apply specialization in
Borel-Moore homology to get a map

BM,G X pip o BM,G X pip
H*7272dimgrzzp) (T?m)( (p)) - H*72dim(cr(p))o((T(p))o)((R(P))0)'



NOTES FOR BEILINSON-DRINFELD SEMINAR - EVEN SHORTER VERSION 7

Over 0: R,y © T (p) is identified with R < 7. The action of G x C* is its usual
action. Thus we have produced a map of graded sets:

1 BM,Gxp BM,Gxp
AW — H*—2dim<;~(p)>0<<T(p>)0>((R(p))0) = H, S dime () (R)-

BM,G x iy,
But we have H*—QdimGT(T)

graded map of sets

(R) = Apla], so for degree reasons we produced a

Fh : A(l) — Ah.
This map is linear, because the averaging map A — Ap[a] equals 0.
Fact 5.6. F} gives the structure of Frobenius-constant quantization.
Example 5.7. G = C*, N = C_,, » > 0. Then F} is the map induced by usual
Frobenius-constant structure on the Weyl algebra
z — aP
y — o
It must be therefore that
ASy((ray)"x) € Ap.

If so then it is automatically central. We can check
P pr
ASp((rzy)z) = H(mj@ rih) zP = 1_[ (red —ih)"zP = ﬂ(ma —ih)a?
i=1 i=1 i=1
Remark 5.8. Can turn this calculation into a proof for large p by torus localization.
But, it is true for all p, by direct geometric argument.

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE,
MA 02139
E-mail address: gusl@mit.edu



	1. Overview
	2. Steenrod's construction
	3. Frobenius-constant quantizations
	4. End of first part - time for a break
	5. Coulomb branch
	5.1. Gr,`39`42`"613A``45`47`"603AT,`39`42`"613A``45`47`"603AR
	5.2. Borel-Moore homology
	5.3. Frobenius-constancy


