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Abstract. We use Steenrod’s construction to prove that the quantum Coulomb

branch is a Frobenius-constant quantization.
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1. Overview

This talk is essentially about ‘power operations’. In the first part I will introduce
some power operations in homological algebra and in quantization theory. In the
second part I will explain how these are related in the context of ‘quantum Coulomb
branch’ of Braverman-Finkelberg-Nakajima.

2. Steenrod’s construction

Notation 2.1.

‚ G - alg. gp./C
‚ X - alg. var./C, G ýX
‚ p - odd prime
‚ DGpXq - G-equivariant bounded constructible derived category of sheaves

of Fp-modules on Xan

‚ Σ - suspension functor
‚ Fp - equivariant constant sheaf
‚ ω - equivariant dualizing complex
‚ µp - subgroup of C˚ of order p
‚ Xp “Mappµp, Xq

ýGp ¸ µp

‚ ^b p : DGpXq Ñ DGppX
pq functor of pth external tensor power

‚ Biadjoint functors Res : DGp¸µp
pXpq Õ DGppX

pq : Ind
1
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Theorem-Definition 2.1 (Steenrod). There is a functor St : DGpXq Ñ DGp¸µp
pXpq

satisfying Res ˝ St – ^b p. In a diagram:

DGpXq
^bp
ÝÝÝÑ DGppX

pq

“

Ò Res

DGpXq
St
ÝÑ DGp¸µp

pXpq.

commutes.

Facts 2.2.

(1) StΣ – ΣpSt.
(2) Given f, g : A Ñ B in DGpXq, can find a morphism h : Abp Ñ Bbp in

DGp¸µpX
pq s.t. Stpf ` gq ´ Stpfq ´ Stpgq equals composition

Avphq : StpAq
adjunction
ÝÝÝÝÝÝÝÑ IndpAbpq

Indphq
ÝÝÝÝÑ IndpBbpq

adjunction
ÝÝÝÝÝÝÝÑ StpBq.

(3) St commutes with multiplication by Fp.
(4) StpFpq – Fp .
(5) Stpωq – ω.
(6) St is monoidal.

Consequence 2.3.

(1) Identify G-equivariant Fp-cohomology Hn
GpXq with HomDGpXqpFp,Σ

n Fpq.
So St induces non-linear maps

St : Hn
GpXq Ñ Hpn

Gp¸µp
pXpq.

Pull back along diagonal ∆:

∆˚˝St : Hn
GpXq Ñ Hpn

Gˆµp
pXq

Kunneth–
ÝÝÝÝÝÝÝÑ pH˚GpXqbH

˚
µp
p˚qqpn “ pH˚GpXqra, ~sqpn.

Here we used: H˚µp
p˚q “ Fpra, ~s, degpaq “ 1,degp~q “ 2. These are linear,

because ∆˚ commutes with Av and Av : H˚GpXq Ñ H˚Gˆµp
pXq equals 0.

Thus have a map of graded vector spaces

St1 : H˚GpXq
p1q Ñ H˚GpXqra, ~s

Here H˚GpXq
p1q is the Frobenius twist of H˚GpXq. It is the algebra obtained

from H˚GpXq by multiplying degrees by p and introducing signs:

xp1qyp1q “ p´1qdegpxq degpyqp
p
2qpxyqp1q.

Fact: St1 is a map of algebras. Coefficients of monomials ~m, a~m are the
Steenrod operations, up to some correction factors.

(2) Equivariant Borel-Moore homology of X is defined as

HBM,G
n :“ HomDGpXqpFp,Σ

nωq

and we have maps of sets

St : HBM,G
n pXq Ñ HBM,Gp¸µp

pn pXpq.

These are not linear, and unlike for cohomology there is no way in general
to get something linear out of them. But we will see later that we can do
something like that if X has a suitably symmetric multiplication.
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Fact 2.4. The graded vector space HBM,G
˚ pXq is a module over H˚GpXq, and in

particular over H˚Gp˚q. The family of maps

St : HBM,G
n pXq Ñ HBM,Gp¸µp

pn pXpq

is compatible with the multiplication by

St : Hn
GpXq Ñ Hpn

Gp¸µp
pXpq

in the natural way.

Example 2.5. Take X “ ˚, G “ C˚. We have H˚C˚ “ Fprcs with degpcq “ 2. The
map of algebras

St1 : Fprcs
p1q Ñ Fprc, a, ~s

factors through the inclusion of Fprc, ~s for degree reasons, and sends c to cp´~p´1c.
Identifying Fprcs with Opgmq and taking Spec we get a Gm-equivariant map

AS~ : gmˆGa Ñ gp1qm .

AS0 is the Frobenius map, while AS1 is the Artin-Schreier map. This observation
generalizes in the natural way to X “ ˚, G “ T complex torus.

3. Frobenius-constant quantizations

AS~ plays a central role in the following theory. Let A be a commutative Fp-
algebra.

Definition 3.1. (1) A quantization of A is a flat (i.e. torsion-free) associative
Fpr~s-algebra A~ satisfying A~{~ “ A.

(2) A Frobenius-constant quantization of A is a quantization A~ of A together
with a map of algebras

F~ : Ap1q Ñ ZpA~q

such that F~ mod ~ is the Frobenius map. Here ZpA~q is the center of A~.
The Frobenius twist Ap1q has meaning if we are in an equivariant setting,
see example.

Example 3.2. Consider Gm “ SpecFprx, x
´1s. SetA “ OpT˚Gmq “ Fprx, x

´1, ys.
Its canonical quantization is the Weyl algebra

A~ “ D~pGmq “ Fpr~sxx, x´1, By{prB, xs “ ~q.
These are both GmˆGm-equivariant (regular action and homotheties) with x in
bidegree p1, 0q and y, B in bidegree p´1, 2q. Note that xp, Bp P ZpA~q. So we can
set

F~ : Ap1q Ñ ZpA~q
xi ÞÑ xpi
yi ÞÑ B

p
i .

F~ is GmˆGm-equivariant. Taking invariants for the regular action we get

Fprxys Ñ Fpr~, xBs
xy ÞÑ xpBp.

It is an exercise to show that xnBn “
śn´1
i“0 pxB ´ i~q. Thus we have

xpBp “
p´1
ź

i“0

pxB ´ i~q “ pxBqp ´ ~p´1xB.
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Therefore if we identify Fprxys with Fprcs and FprxB, ~s with Fprc, ~s we recover
AS~. Likewise if we replace Gm with the Fp-split Langlands dual torus T_ to
complex torus T .

4. End of first part - time for a break

5. Coulomb branch

5.1. Gr, T ,R.

‚ G - complex reductive algebraic group
‚ T - maximal torus of G
‚ N - G-module of dimension d ă 8
‚ K “ Cpptqq, O “ Crrtss.

For simplicity assume that p is large. We consider three ‘reasonable’ ind-schemes
of interest.

(1) The affine Grassmannian Gr is an ind-projective ind-scheme whose C-
points are GpKq{GpOq. Informally,

Gr “ GpKq{GpOq.
Its GpOq-orbits are parameterized by dominant cocharacters λ of T . Cor-
responding orbit closures, Grλ, exhaust Gr. Gr parameterizes pairs

pE , fq
of a principal G-bundle E on the formal disc ∆ and a trivialization f of E
on punctured formal disc ∆o, up to isomorphism.

(2) NpOq is a GpOq-module, and we consider the associated NpOq-bundle

T :“ GpKq ˆ

GpOq
NpOq.

It is an infinite-dimensional vector bundle over Gr. Its ind-scheme structure
is given by pieces T λ

“ T |Grλ . We write T λ
n for finite-dimensional quotient

bundle T λ
{tn. T λ. The rank of this bundle is dimGrλpT λ

nq “ nd. Moduli:
T parameterizes triples up to isomorphism

pE , f, vq
where E , f are as in Gr and v is an N-section of E .

(3) We have T Ñ NpKq by multiplication. R is defined to be the preimage of

NpOq. It is a closed sub-ind-scheme of T , given by pieces Rλ
“ R |Grλ Ă

T λ. The fibers over Gr are vector subspaces of NpOq of finite codimension.

Each Rλ contains the bundle tn. T λ for some n ąą 0, and we will consider
the fiberwise quotient Rλ

n “ Rλ
{tn. T λ. (Draw the picture). The possible

n go to 8 as λÑ8. R parameterizes triples up to isomorpihsm

pE , f, vq
as in T with the additional condition that fpvq extends over ∆.

Each ofGr, T ,R and approximationsGrλ, T λ
n,R

λ
n have natural actions ofGpOq¸

C˚. In the moduli interpretation, GpOq acts simply by changing the trivialization
f , while C˚ acts by automorphisms of ∆. z.pE , f, vq “ pz˚ E , z˚f, z˚vq.

Example 5.1. G “ C˚, N “ C´r, r ě 0. Then on C-points we identify:

(1) Gr “ Z
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(2) T “ ZˆC´rrrtss
(3) R “ Zď0ˆC´rrrtss Y t1u ˆ tr C´rrrtss Y t2u ˆ t2r C´rrrtss Y . . ..

5.2. Borel-Moore homology. Fix λ, n such that Rλ
n exists. Let G be one of the

groups GpOq, GpOq ¸C˚. Since Rλ
n`1 Ñ Rλ

n is an N-bundle, the pullback induces
isomorphisms

HBM,G
i pRλ

nq – HBM,G
i´2d pR

λ
n`1q.

Therefore the shifted Borel-Moore homology

HBM,G
i´2nd pR

λ
nq “ HBM,G

i´2 dim
Grλ

pT λnq
pRλ

nq

is independent of n. We can therefore formally drop the ‘n’ and write it as

HBM,G
i´2 dim

Grλ
pT λqpR

λ
q.

We can then take a colimit as λ Ñ 8 (pushing forward along closed embeddings)
to obtain the formally shifted Borel-Moore homology:

HBM,G
i´2 dimGrpT qpRq.

Definition 5.2. (1) The Coulomb branch is the graded H˚Gp˚q-module

A “ H
BM,GpOq
˚´2 dimGrpT qpRq.

(2) The quantum Coulomb branch is the graded H˚
GˆC˚p˚q-module

A~ “ H
BM,GpOq¸C˚
˚´2 dimGrpT q pRq.

A~ is a flat graded deformation of A over Fpr~s “ H˚C˚p˚q.

Fact 5.3. (1) A, A~ are evenly graded.
(2) A, A~ have algebra structures via ‘convolution’.
(3) A is commutative, and A~ is its quantization. If I have time at the end I

will explain how this works.

Remark 5.4. We can replace GpOq-equivariance by G-equivariance in definition of
A, A~. But to define the convolution we need to use GpOq-equivariance.

Example 5.5. (1) G “ C˚, N “ 0. ThenA~ is the Weyl algebra Fpr~sxx˘, By{prB, xs “
~q. Equivariant BM homology of point n P Z is identified with Fpr~, xBs.xn.

(2) G “ C˚, N “ C´r, r ě 0. Then A~ is the subalgebra of the Weyl algebra
with basis

. . . x´2, x´1, 1,
r

ź

i“1

prxB ´ i~qx,
2r
ź

i“1

prxB ´ i~qx2, . . .

over Fpr~, xBs.

5.3. Frobenius-constancy.

Main Theorem 5.1. A~ is a Frobenius-constant quantization.
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I will construct the map F~ : Ap1q Ñ A~. There is an ind-scheme Rppq over Ga
parameterizing:
$

’

’

’

’

&

’

’

’

’

%

px, E , f, vq : x P C
E a principal G-bundle over ∆π´1x

f a trivialization of E over ∆o
π´1x

v an N-section of E such that fpvq extends over ∆π´1x

,

/

/

/

/

.

/

/

/

/

-

{ „ .

Here by definition:

‚ π : Ga Ñ Ga is the map x ÞÑ xp.
‚ ∆π´1x is the formal neighborhood in Ga of π´1x. In a formula,

∆π´1x “ Specplim
ÐÝ
n

Crts{ptp ´ xqnq.

‚ ∆o
π´1x is the punctured formal neighborhood,

∆o
π´1x “ Specpplim

ÐÝ
n

Crts{ptp ´ xqnqrptp ´ xq´1sq.

There is a global version of GpOq acting on Rppq, but for simplicity we just
consider the actions of G by

g.px, E , f, vq “ px, E , g ˝ f, vq.
and of C˚ by

z.px, E , f, vq “ pzpx, z˚ E , z˚f, z˚vq.
Also Rppq is embedded in T ppq, defined the same way as Rppq but without the

condition on v.
Rppq Ă T ppq .

The version of R with N “ 0 is called Grppq. T ppq is an infinite-dimensional
vector bundle over Grppq, with a fiberwise shift map ptp ´ xq. We may define

HBM,G
˚´2 dimGrppq T

ppqpRppqq

for G “ G or Gˆ C˚, as in the case of R.

Away from 0: fibers of Rppq Ă T ppq are identified with Rp
Ă T p. The action of

G is identified with the diagonal action. C˚ does not act, but µp Ă C˚ does act an
its action is identified with the cyclic action. Therefore we have:

HBM,GˆC˚
˚´2 dimGro

ppq
pT o
ppq
q
pRo

ppqq “ H
BM,Gˆµp

˚`2´2 dimGrp pT pqpR
p
q.

So by using Steenrod’s construction we can define a non-linear graded map

Ap1q Ñ H
BM,Gp¸µp

˚´2 dimGrp pT pqpR
p
q Ñ H

BM,Gˆµp

˚´2 dimGrp pT pqpR
p
q “ HBM,GˆC˚

˚´2´2 dimGro
ppq
pT o
ppq
q
pRo

ppqq.

We will compose this with the restriction

HBM,GˆC˚
˚´2´2 dimGro

ppq
pT o
ppq
q
pRo

ppqq Ñ H
BM,Gˆµp

˚´2´2 dimGro
ppq
pT o
ppq
q
pRo

ppqq.

Since Gˆµp acts trivially on the base Ga, we are able to apply specialization in
Borel-Moore homology to get a map

H
BM,Gˆµp

˚´2´2 dimGro
ppq
pT o
ppq
q
pRo

ppqq Ñ H
BM,Gˆµp

˚´2 dimpGrppqq0 ppT ppqq0q
ppRppqq0q.
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Over 0: Rppq Ă T ppq is identified with R Ă T . The action of GˆC˚ is its usual
action. Thus we have produced a map of graded sets:

Ap1q Ñ H
BM,Gˆµp

˚´2 dimpGrppqq0 ppT ppqq0q
ppRppqq0q “ H

BM,Gˆµp

˚´2 dimGrpT qpRq.

But we have H
BM,Gˆµp

˚´2 dimGrpT qpRq “ A~ras, so for degree reasons we produced a

graded map of sets

F~ : Ap1q Ñ A~.

This map is linear, because the averaging map AÑ A~ras equals 0.

Fact 5.6. F~ gives the structure of Frobenius-constant quantization.

Example 5.7. G “ C˚, N “ C´r, r ě 0. Then F~ is the map induced by usual
Frobenius-constant structure on the Weyl algebra

x ÞÑ xp

y ÞÑ Bp

It must be therefore that

AS~pprxyq
rxq P A~.

If so then it is automatically central. We can check

AS~pprxyq
rxq “

p
ź

i“1

prxB ´ ri~qrxp “
p

ź

i“1

prxB ´ i~qrxp “
pr
ź

i“1

prxB ´ i~qxp.

Remark 5.8. Can turn this calculation into a proof for large p by torus localization.
But, it is true for all p, by direct geometric argument.
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