0 (857) 222-7406

Education _

Massachusetts Institute of Technology

PhD in Mathematics

• All graduate work (except thesis) complete. GPA 5.0/5.0

University of Cambridge

B.A. AND MASTER IN MATHEMATICS

• Best in class. Average score 98/100

Experience

University of Chicago

DICKSON INSTRUCTOR

Massachusetts Institute of Technology

TEACHING ASSISTANT

- Teaching assistant for 18.05, introduction to probability and statistics
- Held weekly recitations and office hours

Massachusetts Institute of Technology

TEACHING ASSISTANT

- Teaching assistant for 18.095, mathematics lecture series
- · Held weekly recitations and office hours
- Teaching rated at 6.3/7 by students

Massachusetts Institute of Technology

TEACHING ASSISTANT

- Teaching assistant for 18.02, multivariable calculus
- Held weekly recitations and office hours
- Teaching rated at 6.3/7 by students

Massachusetts Institute of Technology

PRIMES MENTOR

• Mentored a high school student on a research project which aims to compute characters of certain irreducible representations of modular Cherednik algebras

Massachusetts Institute of Technology

TEACHING ASSISTANT

- Teaching assistant for 18.821, project laboratory in mathematics
- · Mentored and managed collaborative research projects with nine groups of three undergraduate students over the course of a semester
- Teaching rated at 6.8/7 by students

Massachusetts Institute of Technology

UROP+ MENTOR

JANUARY 30, 2018

• Mentored an undergraduate student on a research project computing signature characters of \$1, Verma modules

Chicago, IL September 2018-August 2021

> Cambridge, MA February 2017-May 2017

> > Cambridge, MA January 2017

Cambridge, MA February 2016-May 2016

Cambridge, MA

Cambridge, MA

January 2016-January 2017

September 2015-December 2015

Cambridge, MA May 2015-September 2015

Cambridge, MA 2013-present

Cambridge, UK

2009-2013

| 🛅 Gus Lonergan

988 Memorial Drive, Cambridge, MA, 02138 | Suslonergan@gmail.com | A guslonergan.weebly.com

IAS/Park City Mathematics Institute

GRADUATE SUMMER SCHOOL TEACHING ASSISTANT

- Teaching assistant for the course 'geometric representation theory and quasi-maps into flag varieties'
- Led problem-solving sessions and answered questions related to the course

Research Science Institute at Massachusetts Institute of Technology

RSI MENTOR

· Mentored two high school students on mathematics research projects, both due for publication

Massachusetts Institute of Technology

PRIMES MENTOR

- Mentored a high school student on a research project computing signature characters of sl₂ Verma modules and using this to provide a lower bound for the number of real critical points of a master function
- The student won a \$35,000 prize with this project at the 2015 Intel Science Talent Search
- Results are due for publication

Honors & Awards _____

- Hartley Rogers, Jr., Family Prize, for the best SPUR project
 Charles and Holly Housman Award, for excellence in teaching at MIT Mathematics
- 2013 Akamai Presidential Fellowship, fellowship award at MIT
- 2013 Kennedy Scholarship, prestigious academic award for study at MIT or Harvard
- 2013 Schuldham Plate, award for best graduating student at Gonville and Caius College, Cambridge

Invited Talks and Workshops _____

Group Representation Theory and Applications	Mathematical Sciences Research
Program Associate	January 2018 - May 2018
Geometric Langlands seminar	University of Chicago
STEENROD'S CONSTRUCTION AND FROBENIUS CONSTANCY OF THE COULOMB BRANCH	November 2017
Used Steenrod's construction to prove that the quantum Coulomb branch is a Frobenius constant	quantization
Geometric Representation Theory Seminar	University of Berkeley
A derived Frobenius twist	November 2017
• Used Steenrod's construction to give a derived version of the Frobenius twist functor under geome	tric Satake
Rational Cherednik Algebras and Categorification (AMS)	UC Riverside
Frobenius contraction and Smith theory	November 2017
• Explained how to construct the Frobenius contraction functor for tilting modules using Smith theo	ry
Interactions between representation theory and algebraic geometry	University of Chicago
How to think about Hopf algebroids using Feynman diagrams (poster)	August 2017
 Demonstrated that the axioms of Hopf algebroids are most naturally presented using Feynman dia nary between Hopf algebroids and effective field theories 	grams. Proposed a general dictio-
Massachusetts Institute of	
Lie groups seminar	Technology
Frobenius twist on the affine Grassmannian	April 2017
• Explained an upgrade of my previous results on the Frobenius twist under geometric Satake, with a a 'derived Frobenius twist'	a view towards the construction of

Cambridge, MA

June 2014-July 2014

Cambridge, MA

January 2014-January 2015

JANUARY 30, 2018

Representation theory seminar	University of Massachusetts an
Fourier transform and the quantum Toda lattice	Armerst March 2017
• Explained a result relating modules for the quantum Toda lattice to affine Weyl group-equivariant qu torus Lie algebra	asicoherent sheaves on the dua
Representations and Related Geometry in Lie Theory (JMM)	Atlanta
FROBENIUS AND EMBEDDED GRASSMANNIANS	January 2017
Explained various results related to the block decomposition under geometric Satake	
Sheaves and modular representations of reductive groups (AIM workshop)	Palo Alto
A geometric construction of Frobenius	March 2016
• Explained the geometric construction corresponding to the Frobenius twist under geometric Satake	
Representation theory seminar	MIT and Northeastern University
SEVERAL TALKS ON THE FOLLOWING TOPICS	2014-present

- Tilting perverse sheaves and Soergel's theorem, following 'Tilting Exercises' by Beilinson, Bezrukavnikov and Mirković
- Kostant's theorem, Harish-Chandra's theorem and the Beilinson-Bernstein localization theorem
- Equivariant K-theory, perverse sheaves and affine Hecke algebras, following the book 'Representation Theory and Complex Geometry' by Chriss and Ginzburg
- Nakajima quiver varieties, following the paper 'Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras' by Nakajima
- Nearby and vanishing cycles functors for holonomic D-modules

Papers .

CURRENTLY AVAILABLE

- Steenrod operators, the Coulomb branch and the Frobenius twist, I
- Parity Sheaves and Smith Theory; 1708.08174; with S. Leslie; submitted
- A remark on descent for Coxeter groups; 1707.01156
- A Fourier transform for the quantum Toda lattice; 1706.05344
- A Strong Splitting of the Frobenius Morphism on the Algebra of Distributions of SL_2 ; 1611.07512
- Signatures of Multiplicity Spaces in tensor products of \mathfrak{sl}_2 and $U_q(\mathfrak{sl}_2)$ Representations; 1506.02680; with S. Kishore; accepted by Journal of Algebra
- The Lower Central Series of the Quotient of a Free Algebra; 1503.01447; with L. Kendrick

IN PREPARATION

- Steenrod operators, the Coulomb branch and the Frobenius twist, II
- Hopf algebroids via Feynman diagrams